
소프트웨어 공학 개론

강의 13: 테스팅

최은만
동국대학교 컴퓨터공학과

강의 13: 테스팅

최은만
동국대학교 컴퓨터공학과

Questions

l Q1: 왜 테스트 작업이 중요한가?

l Q2: 테스팅은 어떻게 하나?

l Q3: 테스트에 필요한 도구는?

2

l Q1: 왜 테스트 작업이 중요한가?

l Q2: 테스팅은 어떻게 하나?

l Q3: 테스트에 필요한 도구는?

2

소 개

l 테스트
l 테스트에 필요한 시간과 노력 ---> 매우 크다
l 그러나 테스트는 대부분 초보자나 개인의 역량에 맡기는 경우가 많음

l 정 의
l 시스템이 정해진 요구를 만족하는지, 예상과 실제 결과가 어떤 차이를

보이는지 수동 또는 자동 방법을 동원하여 검사하고 평가하는 일련의 과
정[IEEE, 1993]

l 숨어있는 결함을 찾기 위해 소프트웨어를 작동 시키는 일련의 행위와 절
차

---> 결함이 없음을 증명하는 것이 아니고 결함이 존재함을 보여주는
작업

l 테스트 --> 분석, 설계 도중에 일어나는 검증, 검토 등 품질보증을 위한
모든 행위

3

l 테스트
l 테스트에 필요한 시간과 노력 ---> 매우 크다
l 그러나 테스트는 대부분 초보자나 개인의 역량에 맡기는 경우가 많음

l 정 의
l 시스템이 정해진 요구를 만족하는지, 예상과 실제 결과가 어떤 차이를

보이는지 수동 또는 자동 방법을 동원하여 검사하고 평가하는 일련의 과
정[IEEE, 1993]

l 숨어있는 결함을 찾기 위해 소프트웨어를 작동 시키는 일련의 행위와 절
차

---> 결함이 없음을 증명하는 것이 아니고 결함이 존재함을 보여주는
작업

l 테스트 --> 분석, 설계 도중에 일어나는 검증, 검토 등 품질보증을 위한
모든 행위

소프트웨어 심리

l 프로그래머의 심리
l 자신의 프로그램이 맞다고 생각, 그러나 프로그램은 테스트에 의하여 확

임됨

l 프로그램 안의 오류를 인신 공격, 또는 개인 평가로 해석하여 테스트를
기피

l egoless programming, democratic programming

l 심리적 불안
l 테스트는 파괴적인 과정(destructive process)으로 생각

l 이를 극복하기 위하여 테스트하기 전에 예상 결과를 준비

l independent test, test automation

4

l 프로그래머의 심리
l 자신의 프로그램이 맞다고 생각, 그러나 프로그램은 테스트에 의하여 확

임됨

l 프로그램 안의 오류를 인신 공격, 또는 개인 평가로 해석하여 테스트를
기피

l egoless programming, democratic programming

l 심리적 불안
l 테스트는 파괴적인 과정(destructive process)으로 생각

l 이를 극복하기 위하여 테스트하기 전에 예상 결과를 준비

l independent test, test automation

테스트에 대한 올바른 이해

l 테스트는 오류를 발견하려고 프로그램을 수행 시키는 것
l 따라서 테스트에 의하여 오류가 발견되지 않았다고 하여 프로그램에

오류가 없는 것은 아님
l 완벽한 테스트는 불가능하다.
l 테스트는 창조적인 일이며 힘든 일이다.
l 테스트는 오류의 유입을 방지할 수 있다.
l 테스트는 구현에 관계없는 독립된 팀에 의하여 수행되어야 함

5

l 테스트는 오류를 발견하려고 프로그램을 수행 시키는 것
l 따라서 테스트에 의하여 오류가 발견되지 않았다고 하여 프로그램에

오류가 없는 것은 아님
l 완벽한 테스트는 불가능하다.
l 테스트는 창조적인 일이며 힘든 일이다.
l 테스트는 오류의 유입을 방지할 수 있다.
l 테스트는 구현에 관계없는 독립된 팀에 의하여 수행되어야 함

테스팅 용어

l 오류(error)
l 프로그램 실행 결과가 예상결과와 다른 경우
l 결함 및 고장을 일으키게 한 인간의 실수

l 결함(fault)
l 버그(bug)
l 소프트웨어 오작동의 원인

l 고장(failure)
l 명세로 작성된 요구와 기능을 제대로 수행할 수 없는 경우
l 모든 결함이 고장을 발생하는 것은 아님

6

l 오류(error)
l 프로그램 실행 결과가 예상결과와 다른 경우
l 결함 및 고장을 일으키게 한 인간의 실수

l 결함(fault)
l 버그(bug)
l 소프트웨어 오작동의 원인

l 고장(failure)
l 명세로 작성된 요구와 기능을 제대로 수행할 수 없는 경우
l 모든 결함이 고장을 발생하는 것은 아님

테스팅 원리

l 테스팅은 오류를 발견하려고 프로그램을 실행시키는 것

l 완벽한 테스팅을 불가능

l 테스팅은 창조적이면서 어려운 작업

l 테스팅은 오류의 유입을 방지

l 테스팅은 구현과 관계없는 독립된 팀에 의해 수행되야함

7

l 테스팅은 오류를 발견하려고 프로그램을 실행시키는 것

l 완벽한 테스팅을 불가능

l 테스팅은 창조적이면서 어려운 작업

l 테스팅은 오류의 유입을 방지

l 테스팅은 구현과 관계없는 독립된 팀에 의해 수행되야함

테스팅 과정

8

테스트의 원리

l 테스트의 단계
1) 테스트에 의하여 무엇을 점검할 것인지 정한다.

<예> 테스트의 목표 - 기능의 완벽성, 신뢰도

2) 테스트 방법을 결정한다.

<예> 검사, 증명, 블랙박스 테스트, 화이트 박스 테스트, 자동화 도구

3) 테스트 케이스를 개발한다.

- 테스트 자료, 시행 조건

4) 테스트의 예상되는 올바른 결과를 작성한다.

- 테스트 오라클(test oracle)

5) 테스트 케이스로 실행시킨다.

- 테스트 하니스(test harness)가 필요

9

l 테스트의 단계
1) 테스트에 의하여 무엇을 점검할 것인지 정한다.

<예> 테스트의 목표 - 기능의 완벽성, 신뢰도

2) 테스트 방법을 결정한다.

<예> 검사, 증명, 블랙박스 테스트, 화이트 박스 테스트, 자동화 도구

3) 테스트 케이스를 개발한다.

- 테스트 자료, 시행 조건

4) 테스트의 예상되는 올바른 결과를 작성한다.

- 테스트 오라클(test oracle)

5) 테스트 케이스로 실행시킨다.

- 테스트 하니스(test harness)가 필요

테스트와 개발 단계 (V모형)

l 테스트 단계와 소프트웨어 개발 단계의 관계

10

테스트의 유형

l Validation
l Are we building the right product?

l Verification
l Are we building the product right?

l 인증(Certification)
l A written guarantee

l 정적 분석(Static Analysis)
l 동적 분석(Dynamic Analysis)
l 단계별

l 단위 테스트(unit test)
l 통합 테스트(integration test)
l 인수 테스트(acceptance test)

11

l Validation
l Are we building the right product?

l Verification
l Are we building the product right?

l 인증(Certification)
l A written guarantee

l 정적 분석(Static Analysis)
l 동적 분석(Dynamic Analysis)
l 단계별

l 단위 테스트(unit test)
l 통합 테스트(integration test)
l 인수 테스트(acceptance test)

테스트의 유형

l 시험 방법
l 화이트 박스 테스트
l 블랙 박스 테스트

l 기능 시험
l 성능 시험
l 스트레스 시험
l Benchmark 시험
l Field 시험
l 리그레션 테스트
l 품질 보증

12

l 시험 방법
l 화이트 박스 테스트
l 블랙 박스 테스트

l 기능 시험
l 성능 시험
l 스트레스 시험
l Benchmark 시험
l Field 시험
l 리그레션 테스트
l 품질 보증

테스트 케이스

l 테스트 케이스 선택이 무엇보다 중요
l 좋은 테스트 케이스란?

l 효과적으로 결함을 드러낼 수 있는 테스트 케이스

l 전수 테스팅(exhaust testing)
l 가능한 입력을 모두 테스팅

l 테스트 케이스
l 테스트 데이터와 예상 결과

13

l 테스트 케이스 선택이 무엇보다 중요
l 좋은 테스트 케이스란?

l 효과적으로 결함을 드러낼 수 있는 테스트 케이스

l 전수 테스팅(exhaust testing)
l 가능한 입력을 모두 테스팅

l 테스트 케이스
l 테스트 데이터와 예상 결과

오류 패턴

l 테스트는 시스템의 오류 패턴과 매우 밀접한 관련
l 모듈에 오류가 너무 많다면 오류 없는 모듈이 될 수 있도록 테스트하

여 고치는 것은 한계

14

블랙 박스 테스트

l 블랙 박스 테스팅 vs. 화이트 박스 테스팅
l 프로그램의 구조를 고려하느냐 안하느냐에 따라 구별

l 모듈이 요구에 맞게 잘 작동하는가에 초점

l 기능 테스팅(functional testing)
l 모듈의 외형(입력, 출력)
l 모듈의 기능 위주의 검사

l 전수 테스팅
l 모든 기능에 대하여 전부 테스팅

15

l 블랙 박스 테스팅 vs. 화이트 박스 테스팅
l 프로그램의 구조를 고려하느냐 안하느냐에 따라 구별

l 모듈이 요구에 맞게 잘 작동하는가에 초점

l 기능 테스팅(functional testing)
l 모듈의 외형(입력, 출력)
l 모듈의 기능 위주의 검사

l 전수 테스팅
l 모든 기능에 대하여 전부 테스팅

동치 클래스 분해

l 전수 테스팅이 불가능하여 입력값의 영역을 동치 클래스로 나누고 대
표값을 실행

l 내부 구조를 보지 않고 이상적인 최적의 동치클래스를 결정하기가 어
려움

l 예) 절대값을 구하는 모듈
• 양의 정수와 음의 정수가 동치 클래스

l 입력이 일정한 범위 안의 값을 가져야 한다면 최소한 세 개의 동치
클래스가 존재한다. 범위보다 작은 값, 범위 내의 값, 범위를 넘어서
는 큰 값

l <예> 현금자동 지급기의 총 지급액 범위:1000원-30만원
① 1000원에서 30만원 사이의 값(정상)
② 1000원 미만의 값(비정상)
③ 30만원보다 큰 값(비정상)

16

l 전수 테스팅이 불가능하여 입력값의 영역을 동치 클래스로 나누고 대
표값을 실행

l 내부 구조를 보지 않고 이상적인 최적의 동치클래스를 결정하기가 어
려움

l 예) 절대값을 구하는 모듈
• 양의 정수와 음의 정수가 동치 클래스

l 입력이 일정한 범위 안의 값을 가져야 한다면 최소한 세 개의 동치
클래스가 존재한다. 범위보다 작은 값, 범위 내의 값, 범위를 넘어서
는 큰 값

l <예> 현금자동 지급기의 총 지급액 범위:1000원-30만원
① 1000원에서 30만원 사이의 값(정상)
② 1000원 미만의 값(비정상)
③ 30만원보다 큰 값(비정상)

동치 분해

l 또 다른 방법
l 동치 클래스와는 다른 동작을 보일만한 특수한 값을 찾아내기
l 예: 0, 비정상적인 입력

l 출력에 대한 통치 클래스
l 예: 흑자, 적자, 본전
l 예: 길이가 N인 스트링 s, 정수 n

17

경계값 분석

l 동치 클래스의 경계에 있는 값을 선택
l 경계에 있는 값을 가진 테스트 케이스는 높은 효율을 보임

l 범위 경계선 상의 값과 하나 작은 값, 하나 큰 값

l 변수가 여러 개일 때
l 하나는 고정, 하나는 변동(범위 밖, 안, 경계)

18

l 동치 클래스의 경계에 있는 값을 선택
l 경계에 있는 값을 가진 테스트 케이스는 높은 효율을 보임

l 범위 경계선 상의 값과 하나 작은 값, 하나 큰 값

l 변수가 여러 개일 때
l 하나는 고정, 하나는 변동(범위 밖, 안, 경계)

원인 결과 그래프

l 동치 클래스, 경계값 분석의 단점
l 각각의 입력을 별도로 생각

l 원인 결과 그래프
l 입력 조건의 조합을 체계적으로
선택하여 개수를 조절

l 예) 은행 데이터 베이스
l 입금 계정 번호 트랜젝션_금액
l 출금 계정 번호 트랜젝션_금액

19

l 동치 클래스, 경계값 분석의 단점
l 각각의 입력을 별도로 생각

l 원인 결과 그래프
l 입력 조건의 조합을 체계적으로
선택하여 개수를 조절

l 예) 은행 데이터 베이스
l 입금 계정 번호 트랜젝션_금액
l 출금 계정 번호 트랜젝션_금액

상태 기반 테스팅

l 상태 기반 시스템
l 시스템의 동작과 출력은 제공되는 입력만이 아니라 시스템의 상태에 의

하여 좌우됨

l 상태 모델
l 상태를 저장하는 시스템을 모델링
l 상태 공간은 변수의 제곱에 비례

20

상태 기반 테스팅

l 테스트 케이스

21

퀴즈

l 다음 프로그램을 테스팅하기 위한 테스트 케이스는 몇 개가 필요한가?(From
Glen Myers, The Art of Software Testing)

l 입력창에서 세 개의 정수값을 읽어 그것이 삼각형의 세 변의 길이로
해석하여 정삼각형, 이등변 삼각형, 부등변 삼각형인지 체크하는 그
로그램

22

화이트박스 테스팅

l 모듈의 논리적인 구조를 체계적으로 점검하는 구조적 테스팅

l 여러가지 프로그램 구조를 기반으로 테스트

l 논리 흐름도(logic-flow diagram)을 이용
l 노드: 모듈내의 모든 세그먼트
l 간선: 제어 흐름

23

l 모듈의 논리적인 구조를 체계적으로 점검하는 구조적 테스팅

l 여러가지 프로그램 구조를 기반으로 테스트

l 논리 흐름도(logic-flow diagram)을 이용
l 노드: 모듈내의 모든 세그먼트
l 간선: 제어 흐름

기본 경로 테스팅

l 기본경로(basis path)
l 독립적인 논리 흐름을 검사하는 테스트 케이스를 생성

l 시작 노드에서 종료 노드까지의 서로 다른 경로로써
싸이클은 최대 한번만 지나야 함
<예> Remove 함수에 대한 논리흐름 그래프와 테스트 케이스

24

l 기본경로(basis path)
l 독립적인 논리 흐름을 검사하는 테스트 케이스를 생성

l 시작 노드에서 종료 노드까지의 서로 다른 경로로써
싸이클은 최대 한번만 지나야 함
<예> Remove 함수에 대한 논리흐름 그래프와 테스트 케이스

1. S-1-2-E: 빈 리스트
2. S-1-2-3-4-9-10-2-E: 한 개의 요
소를 가진 리스트
3. S-1-2-3-4-5-6-8-4-9-10-2-E: 중
복 요소를 가진 리스트
4. S-1-2-3-4-5-7-8-4-9-10-2-E: 중
복 요소가 없는 리스트

싸이클로매틱 복잡도

l 기본 경로의 수를 결정하는 이론

l 싸이클로매틱 복잡도 계산 3가지 방법
l 폐쇄 영역의 수 +1 : 논리 흐름 그래프는 이차원 평면을 여러 영역으로

나누며, 이 중 폐쇄된 영역의 수 에 1을 더한 값
l 노드와 간선의 수 : 간선의 수에서 노드의 수를 빼고 2를 더한 값
l 단일 조건의 수 +1 : 참과 거짓으로 판별되는 원자적 조건의 수에 1을

더한 값

l 3가지 방법의 값이 같아야 함

25

l 기본 경로의 수를 결정하는 이론

l 싸이클로매틱 복잡도 계산 3가지 방법
l 폐쇄 영역의 수 +1 : 논리 흐름 그래프는 이차원 평면을 여러 영역으로

나누며, 이 중 폐쇄된 영역의 수 에 1을 더한 값
l 노드와 간선의 수 : 간선의 수에서 노드의 수를 빼고 2를 더한 값
l 단일 조건의 수 +1 : 참과 거짓으로 판별되는 원자적 조건의 수에 1을

더한 값

l 3가지 방법의 값이 같아야 함

테스트 커버리지

l 테스트를 어느 정도 완벽히 수행할 것인가의 기준
l 노드 커버리지

• 논리 흐름 그래프의 각 노드가 테스트 케이스에 의하여 적어도 한 번씩 방문
되어야 하는 검증기준

• 프로그램 문장 100% 커버

l 간선 커버리지
• 논리 흐름 그래프의 각 간선이 테스트 케이스에 의하여 적어도 한 번씩 방문

되어야 하는 검증기준
• 모든 분기점 테스트(Branch coverage)

l 기본 경로 커버리지
• 모든 기본 경로가 적어도 한 번씩 방문되어야 하는 검증기준
• 간선 커버리지의 50%

l 모든 경로 커버리지
• 모든 가능한 경로를 적어도 한 번씩 테스트하는 검증기준
• 현실적으로 불가능

26

l 테스트를 어느 정도 완벽히 수행할 것인가의 기준
l 노드 커버리지

• 논리 흐름 그래프의 각 노드가 테스트 케이스에 의하여 적어도 한 번씩 방문
되어야 하는 검증기준

• 프로그램 문장 100% 커버

l 간선 커버리지
• 논리 흐름 그래프의 각 간선이 테스트 케이스에 의하여 적어도 한 번씩 방문

되어야 하는 검증기준
• 모든 분기점 테스트(Branch coverage)

l 기본 경로 커버리지
• 모든 기본 경로가 적어도 한 번씩 방문되어야 하는 검증기준
• 간선 커버리지의 50%

l 모든 경로 커버리지
• 모든 가능한 경로를 적어도 한 번씩 테스트하는 검증기준
• 현실적으로 불가능

반복문의 테스팅(1)

l Beizer 반복구조 분류

l 단순 반복

l 경계값 분석 방법 이용
l 반복 구조를 들어가지 않고 생략
l 반복 구조 안에서 한 번 반복
l 반복 구조 안에서 두 번 반복
l 일정한 횟수의 반복
l 반복 최대 횟수 − 1 만큼 반복
l 반복 최대 횟수만큼 반복
l 반복 최대 횟수 +1 만큼 반복

27

l Beizer 반복구조 분류

l 단순 반복

l 경계값 분석 방법 이용
l 반복 구조를 들어가지 않고 생략
l 반복 구조 안에서 한 번 반복
l 반복 구조 안에서 두 번 반복
l 일정한 횟수의 반복
l 반복 최대 횟수 − 1 만큼 반복
l 반복 최대 횟수만큼 반복
l 반복 최대 횟수 +1 만큼 반복

반복문의 테스팅(2)

l 중첩된 반복

l 가장 내부에 있는 반복 구조부터 테스트 (단, 외부 반복 구조는 최소
반복횟수로 지정)

l 최소 횟수의 반복
l 최소 횟수보다 하나 많은 반복
l 범위 내 임의의 횟수 반복
l 최대 횟수보다 하나 적은 반복
l 최대 횟수의 반복
l 외부로 향하여 다음 반복구조를 테스트

28

l 중첩된 반복

l 가장 내부에 있는 반복 구조부터 테스트 (단, 외부 반복 구조는 최소
반복횟수로 지정)

l 최소 횟수의 반복
l 최소 횟수보다 하나 많은 반복
l 범위 내 임의의 횟수 반복
l 최대 횟수보다 하나 적은 반복
l 최대 횟수의 반복
l 외부로 향하여 다음 반복구조를 테스트

반복문의 테스팅(3)

l 연속된 반복
l 반복구조가 서로 독립적이면 ‘단

순반복’
l 반복구조가 어느 한쪽이 포함된

관계라면 ‘중첩된 반복’

l 비구조화 반복
l 구조적 반복 형태로 변경하여 테

스트

29

l 연속된 반복
l 반복구조가 서로 독립적이면 ‘단

순반복’
l 반복구조가 어느 한쪽이 포함된

관계라면 ‘중첩된 반복’

l 비구조화 반복
l 구조적 반복 형태로 변경하여 테

스트

사용 사례 기반 테스팅

l 사용 사례 명세로부터 테스트 케이스 추출

1. 액터의 입력과 액션을 파악
<예> 사용자 등록 사용 사례로부터 입력요소 추출

30

l 사용 사례 명세로부터 테스트 케이스 추출

1. 액터의 입력과 액션을 파악
<예> 사용자 등록 사용 사례로부터 입력요소 추출

사용 사례 기반 테스팅

2. 입력 값을 결정
l 정상/비정상/예외 값 분류
<예> 파악된 입력 요소의 값 결정

31

2. 입력 값을 결정
l 정상/비정상/예외 값 분류
<예> 파악된 입력 요소의 값 결정

사용 사례 기반 테스팅

3. 테스트 케이스 생성
l 입력 값 조합 규칙

• 테스트 조합이 프로그램 기능과 동작의 정확성을 가진다면 선택
• 테스트 조합이 오류를 발견할 가능성이 있다면 선택
• 테스트 조합이 선택된 다른 테스트 조합에 의해 포함될 수 있다면 삭제(중복

제거), 유지할지 삭제할지 불분명한 것은 선택

32

3. 테스트 케이스 생성
l 입력 값 조합 규칙

• 테스트 조합이 프로그램 기능과 동작의 정확성을 가진다면 선택
• 테스트 조합이 오류를 발견할 가능성이 있다면 선택
• 테스트 조합이 선택된 다른 테스트 조합에 의해 포함될 수 있다면 삭제(중복

제거), 유지할지 삭제할지 불분명한 것은 선택

상태 기반 테스팅

l 같은 입력에 대해 같은 동작을 보이며 동일한 결과를 생성하는
시스템(state-less system)을 대상

l 배치 처리 시스템
l 계산 중심 시스템
l 하드웨어로 구성된 회로

l 시스템의 동작은 시스템의 상태에 의해 좌우됨

l 상태 모델 구성요소
l 상태 – 시스템의 과거 입력에 대한 영향을 표시
l 트랜지션 – 이벤트에 대한 반응으로 시스템이 하나의 상태에서 다른

상태로 어떻게 변해가는지를 나타냄
l 이벤트 – 시스템에 대한 입력
l 액션 – 이벤트에 대한 출력

33

l 같은 입력에 대해 같은 동작을 보이며 동일한 결과를 생성하는
시스템(state-less system)을 대상

l 배치 처리 시스템
l 계산 중심 시스템
l 하드웨어로 구성된 회로

l 시스템의 동작은 시스템의 상태에 의해 좌우됨

l 상태 모델 구성요소
l 상태 – 시스템의 과거 입력에 대한 영향을 표시
l 트랜지션 – 이벤트에 대한 반응으로 시스템이 하나의 상태에서 다른

상태로 어떻게 변해가는지를 나타냄
l 이벤트 – 시스템에 대한 입력
l 액션 – 이벤트에 대한 출력

상태 기반 테스팅

<예> 예금 계좌의 상태 모델 예시

34

상태 기반 테스팅

l 검증 기준(coverage)
l 모든 트랜지션

• 테스트 케이스 집합이 상태 그래프의 모든 트랜지션을 점검

l 모든 트랜지션 쌍
• 테스트 케이스 집합이 모든 이웃 트랜지션의 쌍을 점검
• 유입(incoming)과 방출(outgoing) 트랜지션 쌍을 의미

l 트랜지션 트리
• 테스트 케이스 집합이 모든 단순 경로를 만족시키는 기준

35

l 검증 기준(coverage)
l 모든 트랜지션

• 테스트 케이스 집합이 상태 그래프의 모든 트랜지션을 점검

l 모든 트랜지션 쌍
• 테스트 케이스 집합이 모든 이웃 트랜지션의 쌍을 점검
• 유입(incoming)과 방출(outgoing) 트랜지션 쌍을 의미

l 트랜지션 트리
• 테스트 케이스 집합이 모든 단순 경로를 만족시키는 기준

통합 테스팅

l 모듈의 인터페이스 결합을 테스트
l 여러 개발 팀에서 개발한 각각의 단위 모듈을 대상
l 모듈-모듈 간의 결합을 테스트

l 모듈의 결합 순서에 따라 방법이 다름
l 빅뱅(big-bang)
l 하향식(top-down)
l 상향식(bottom-up)
l 연쇄식(threads)

l 용어
l 드라이버

• 시험 대상 모듈을 호출하는 간이 소프트웨어

l 스텁
• 시험 대상 모듈이 호출하는 또 다른 모듈

36

l 모듈의 인터페이스 결합을 테스트
l 여러 개발 팀에서 개발한 각각의 단위 모듈을 대상
l 모듈-모듈 간의 결합을 테스트

l 모듈의 결합 순서에 따라 방법이 다름
l 빅뱅(big-bang)
l 하향식(top-down)
l 상향식(bottom-up)
l 연쇄식(threads)

l 용어
l 드라이버

• 시험 대상 모듈을 호출하는 간이 소프트웨어

l 스텁
• 시험 대상 모듈이 호출하는 또 다른 모듈

빅뱅 통합

l 한 번에 모든 모듈을 모아 통합

l 장점
l 고도의 신뢰도가 요구되는 시스템의

경우 중요 부분을 먼저 구현하기 때문에
의뢰자에게 신뢰감을 줄 수 있음.

l 중요 부분을 먼저 구현함으로써 여러 번
테스트가 반복되어 완고한 개발이
가능함

l 단점
l 오류의 위치와 원인을 찾기 어려움
l 단위 테스트에 많은 시간과 노력이 듬

• 준비해야 할 드라이버/스텁 수가 많음

l 개발 진도를 예측하기 어려움

37

l 한 번에 모든 모듈을 모아 통합

l 장점
l 고도의 신뢰도가 요구되는 시스템의

경우 중요 부분을 먼저 구현하기 때문에
의뢰자에게 신뢰감을 줄 수 있음.

l 중요 부분을 먼저 구현함으로써 여러 번
테스트가 반복되어 완고한 개발이
가능함

l 단점
l 오류의 위치와 원인을 찾기 어려움
l 단위 테스트에 많은 시간과 노력이 듬

• 준비해야 할 드라이버/스텁 수가 많음

l 개발 진도를 예측하기 어려움

하향식 통합

l 시스템 구조상 최상위에 있는 모듈부터 통합

l 장점
l 중요한 모듈의 인터페이스를

조기에 테스트
l 스텁을 이용하여 시스템

모습을 일찍 구현가능
l 개발자 입장에서 용이함

l 단점
l 입출력 모듈이 상대적으로

하위에 있음
• 테스트 케이스 작성 및

실행이 어려움

l 중요 기능이 마지막에 구현됨

38

l 시스템 구조상 최상위에 있는 모듈부터 통합

l 장점
l 중요한 모듈의 인터페이스를

조기에 테스트
l 스텁을 이용하여 시스템

모습을 일찍 구현가능
l 개발자 입장에서 용이함

l 단점
l 입출력 모듈이 상대적으로

하위에 있음
• 테스트 케이스 작성 및

실행이 어려움

l 중요 기능이 마지막에 구현됨

상향식 통합

l 시스템 구조상 최하위에 있는 모듈부터 통합

l 장점
l 점증적 통합 방식

• 오류 발견이 쉬움
• 하드웨어 사용 분산

l 하위층 모듈을 상위층보다
더 많이 테스트

l 단점
l 초기에 시스템의 뼈대가 갖추어

지지 않음
l 상위층의 중요한 인터페이스가

마지막에 가서야 확인 가능
l 의뢰자에게 시스템을 시험해 볼

기회를 충분히 제공하지 못함

39

l 시스템 구조상 최하위에 있는 모듈부터 통합

l 장점
l 점증적 통합 방식

• 오류 발견이 쉬움
• 하드웨어 사용 분산

l 하위층 모듈을 상위층보다
더 많이 테스트

l 단점
l 초기에 시스템의 뼈대가 갖추어

지지 않음
l 상위층의 중요한 인터페이스가

마지막에 가서야 확인 가능
l 의뢰자에게 시스템을 시험해 볼

기회를 충분히 제공하지 못함

연쇄식 통합

l 특정 기능을 수행하는 모듈의 최소 단위(thread)로 부터 시작
l 입력, 출력
l 어느 정도의 기본 기능을 수행하는 모듈

l 상대적으로 중요한 모듈부터 개발

l 장점
l 초기에 시스템의 골격이 형성

• 사용자 의견을 빨리 확인 가능

l 시스템을 나누어 개발 하기 쉽다

40

l 특정 기능을 수행하는 모듈의 최소 단위(thread)로 부터 시작
l 입력, 출력
l 어느 정도의 기본 기능을 수행하는 모듈

l 상대적으로 중요한 모듈부터 개발

l 장점
l 초기에 시스템의 골격이 형성

• 사용자 의견을 빨리 확인 가능

l 시스템을 나누어 개발 하기 쉽다

시스템 및 인수 테스팅

l 컴포넌트 통합 후 수행하는 테스트 기법

l 테스트 종류
l 기능 테스트
l 성능 테스트
l 보안 테스트
l 사용성 테스트
l 인수 테스트
l 설치 테스트

41

l 컴포넌트 통합 후 수행하는 테스트 기법

l 테스트 종류
l 기능 테스트
l 성능 테스트
l 보안 테스트
l 사용성 테스트
l 인수 테스트
l 설치 테스트

기능 테스트

l 기능적 요구와 시스템의 차이를 발견하기 위한 테스트

l 사용자와 관련되어 있으며 오류를 유발할 가능성이 많은 테스트를 선
정

l 사용사례 모델을 검토하고 오류를 일으킬만한 사용사례 인스턴스를
찾아낸다.

l 테스트 케이스
l 일반적인 사례
l 예외적인 사례

42

l 기능적 요구와 시스템의 차이를 발견하기 위한 테스트

l 사용자와 관련되어 있으며 오류를 유발할 가능성이 많은 테스트를 선
정

l 사용사례 모델을 검토하고 오류를 일으킬만한 사용사례 인스턴스를
찾아낸다.

l 테스트 케이스
l 일반적인 사례
l 예외적인 사례

기능 테스트

l 기능 테스트 케이스 작성 과정

43

성능 테스트

l 시스템의 여러 측면 테스트
l 작업 부하(workload)

• 시스템이 처리하고 생성하는 작업의 양

l 처리량(throughput)
• 트랜잭션 의 수
• 시간 당 처리하는 메일 수

l 반응 시간(response time)
• 시스템 요구를 처리하는 데 걸리는 총 시간

l 효율성
• 주어진 작업 처리를 위한 CPU시간과 메모리 같은 자원의 량의 비율

l 자원 효율성

44

l 시스템의 여러 측면 테스트
l 작업 부하(workload)

• 시스템이 처리하고 생성하는 작업의 양

l 처리량(throughput)
• 트랜잭션 의 수
• 시간 당 처리하는 메일 수

l 반응 시간(response time)
• 시스템 요구를 처리하는 데 걸리는 총 시간

l 효율성
• 주어진 작업 처리를 위한 CPU시간과 메모리 같은 자원의 량의 비율

l 자원 효율성

성능 테스트

l 테스트 방법
l 스트레스 테스팅

• 시스템 처리능력의 몇 배의 작업부하를 처리하고 견딜 수 있는지 측정

l 성능 테스팅
• 정상적인 사용 환경에서 시스템의 성능을 측정하는데 사용
• 시뮬레이션을 이용한 테스팅 가능

l 보안 테스팅
• 시스템의 보안 취약점을 찾아내려는 목적

45

l 테스트 방법
l 스트레스 테스팅

• 시스템 처리능력의 몇 배의 작업부하를 처리하고 견딜 수 있는지 측정

l 성능 테스팅
• 정상적인 사용 환경에서 시스템의 성능을 측정하는데 사용
• 시뮬레이션을 이용한 테스팅 가능

l 보안 테스팅
• 시스템의 보안 취약점을 찾아내려는 목적

사용자 인터페이스 테스트

l 기능, 성능, 보안 테스트와 목적이 다름
l 인간 공학적인 목적

l 테스트 목적
l 보고 느끼는 UI에 대한 결함
l 데이터 입력과 출력 디스플레이에 대한 결함
l 액터-시스템 사이의 동작 결함
l 오류 처리에 대한 결함
l 문서와 도움말에 대한 결함

46

l 기능, 성능, 보안 테스트와 목적이 다름
l 인간 공학적인 목적

l 테스트 목적
l 보고 느끼는 UI에 대한 결함
l 데이터 입력과 출력 디스플레이에 대한 결함
l 액터-시스템 사이의 동작 결함
l 오류 처리에 대한 결함
l 문서와 도움말에 대한 결함

인수 테스트

l 시스템을 당장 사용할 수 있도록 모든 준비가 되어 있는지 확인

l 개발자를 제외한 의뢰자 또는 대리인이 테스트 수행

l 시스템 요구 분석서를 기반으로 한 테스트 수행

l 실제 업무 절차를 따라 테스트 수행

l 테스트 유형
l 알파 테스트

• 선택된 사용자가 개발 환경에서 시험하는 것

l 베타 테스트
• 선택된 사용자가 외부 환경에서 시험하는 것(필드 테스팅)

47

l 시스템을 당장 사용할 수 있도록 모든 준비가 되어 있는지 확인

l 개발자를 제외한 의뢰자 또는 대리인이 테스트 수행

l 시스템 요구 분석서를 기반으로 한 테스트 수행

l 실제 업무 절차를 따라 테스트 수행

l 테스트 유형
l 알파 테스트

• 선택된 사용자가 개발 환경에서 시험하는 것

l 베타 테스트
• 선택된 사용자가 외부 환경에서 시험하는 것(필드 테스팅)

테스트 도구

l 테스트 작업을 자동화

l 도구 종류
l 코드 분석 도구
l 테스트 케이스 생성 도구
l 테스트 케이스 실행 도구
l 단위 테스트 도구

48

l 테스트 작업을 자동화

l 도구 종류
l 코드 분석 도구
l 테스트 케이스 생성 도구
l 테스트 케이스 실행 도구
l 단위 테스트 도구

코드 분석 도구

l 정적 분석 도구
l 프로그램을 실행하지 않고 분석

l 코드 분석 도구
• 원시 코드의 문법 검사

l 구조 검사 도구
• 원시코드의 그래프를 이용한 구조적인 결함 확인

l 데이터 분석 도구
• 원시코드를 검사하여 잘못된 링크나 데이터 정의의 충돌, 잘못된 데이터의 사

용을 발견

l 순서 검사 도구
• 이벤트 순서가 올바른지 체크

49

l 정적 분석 도구
l 프로그램을 실행하지 않고 분석

l 코드 분석 도구
• 원시 코드의 문법 검사

l 구조 검사 도구
• 원시코드의 그래프를 이용한 구조적인 결함 확인

l 데이터 분석 도구
• 원시코드를 검사하여 잘못된 링크나 데이터 정의의 충돌, 잘못된 데이터의 사

용을 발견

l 순서 검사 도구
• 이벤트 순서가 올바른지 체크

코드 분석 도구

l 동적 분석 도구
l 프로그램을 실행하면서 분석

l 프로그램이 수행되는 동안 이벤트의 상태 파악을 위한 특정한 변수나 조
건의 스냅샷(snapshot)을 생성

• 시스템의 성능 또는 기능에 영향을 주는 분기점(breakpoint) 파악에 도움

l 모듈의 호출 횟수나 수행된 문장 번호를 리스트로 만들어 줌
• 테스트 만족도를 평가하는 지표

50

l 동적 분석 도구
l 프로그램을 실행하면서 분석

l 프로그램이 수행되는 동안 이벤트의 상태 파악을 위한 특정한 변수나 조
건의 스냅샷(snapshot)을 생성

• 시스템의 성능 또는 기능에 영향을 주는 분기점(breakpoint) 파악에 도움

l 모듈의 호출 횟수나 수행된 문장 번호를 리스트로 만들어 줌
• 테스트 만족도를 평가하는 지표

테스트 케이스 생성 도구

l 테스트 케이스를 자동으로 생성

l 도구 유형
l 자료 흐름도

• 자료 흐름도를 이용하여 define-use 관계를 찾음

l 기능 테스트 방법
• 주어진 기능을 구동시키는 모든 가능한 상태를 파악하여 이에 대한 입력을 작

성

l 입력 도메인 분석
• 원시코드의 내부를 참조하지 않고 입력 변수가 가질 수 있는 값의 도메인을

분석

l 랜덤 테스트
• 입력 값을 무작위로 추출하여 테스트

51

l 테스트 케이스를 자동으로 생성

l 도구 유형
l 자료 흐름도

• 자료 흐름도를 이용하여 define-use 관계를 찾음

l 기능 테스트 방법
• 주어진 기능을 구동시키는 모든 가능한 상태를 파악하여 이에 대한 입력을 작

성

l 입력 도메인 분석
• 원시코드의 내부를 참조하지 않고 입력 변수가 가질 수 있는 값의 도메인을

분석

l 랜덤 테스트
• 입력 값을 무작위로 추출하여 테스트

테스트 케이스 실행 도구

l 테스트 작업 수행이나 계획을 도와줌

l 도구 유형
l 캡처 및 리플레이

• 미리 입력된 입력 값을 이용하여 실행하고 결과를 캡처하여 비교

l 스텁과 드라이버
• 자동으로 스텁, 드라이버를 생성

l 자동 테스트 환경
• 통합된 테스트 환경

52

l 테스트 작업 수행이나 계획을 도와줌

l 도구 유형
l 캡처 및 리플레이

• 미리 입력된 입력 값을 이용하여 실행하고 결과를 캡처하여 비교

l 스텁과 드라이버
• 자동으로 스텁, 드라이버를 생성

l 자동 테스트 환경
• 통합된 테스트 환경

단위 테스트 도구

l XUnit 등 다양한 언어로 작성된 프로그램의 단위 테스트와 리그레션
테스트를 지원

l 테스트 케이스와 테스트 결과의 체크를 한데 묶은 패키지

l 테스트 케이스의 반복 실행가능(리그레션 테스트)

53

l XUnit 등 다양한 언어로 작성된 프로그램의 단위 테스트와 리그레션
테스트를 지원

l 테스트 케이스와 테스트 결과의 체크를 한데 묶은 패키지

l 테스트 케이스의 반복 실행가능(리그레션 테스트)

237점157점464점

교

Questions?

237점157점464점

교

Questions?

